HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Bildclustering
Image Clustering On Tiny Imagenet
Image Clustering On Tiny Imagenet
Metriken
Accuracy
NMI
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
NMI
Paper Title
Repository
DAC
0.066
0.190
Deep Adaptive Image Clustering
-
MMDC
0.119
0.274
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images
GAN
0.041
0.135
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
PRO-DSC
0.698
0.805
Exploring a Principled Framework For Deep Subspace Clustering
-
VAE
0.036
0.113
Auto-Encoding Variational Bayes
SPICE
0.305
0.449
SPICE: Semantic Pseudo-labeling for Image Clustering
ITAE
0.6823
0.8178
Improving Image Clustering with Artifacts Attenuation via Inference-Time Attention Engineering
-
DEC
0.037
0.115
Unsupervised Deep Embedding for Clustering Analysis
CC
0.14
0.34
Contrastive Clustering
C3
0.141
0.335
C3: Cross-instance guided Contrastive Clustering
IMC-SwAV (Best)
0.282
0.526
Information Maximization Clustering via Multi-View Self-Labelling
DCCM
0.108
0.224
Deep Comprehensive Correlation Mining for Image Clustering
JULE
0.033
0.102
Joint Unsupervised Learning of Deep Representations and Image Clusters
IMC-SwAV (Avg+-)
0.279
0.485
Information Maximization Clustering via Multi-View Self-Labelling
0 of 14 row(s) selected.
Previous
Next