Graph Regression On Peptides Struct
Metriken
MAE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | MAE |
---|---|
drew-dynamically-rewired-message-passing-with | 0.2536±0.0015 |
diffusing-graph-attention | 0.2461±0.0010 |
cin-enhancing-topological-message-passing | 0.2523 |
where-did-the-gap-go-reassessing-the-long | 0.2477±0.0009 |
from-primes-to-paths-enabling-fast-multi | 0.25 |
exphormer-sparse-transformers-for-graphs | 0.2481±0.0007 |
learning-probabilistic-symmetrization-for-1 | 0.2559 |
pure-transformers-are-powerful-graph-learners | 0.2489±0.0013 |
molecular-fingerprints-are-strong-models-for | 0.2459 |
neural-priority-queues-for-graph-neural | 0.2589±0.0031 |
learning-long-range-dependencies-on-graphs | 0.2463 ± 0.0005 |
molecular-fingerprints-are-strong-models-for | 0.2432 |
where-did-the-gap-go-reassessing-the-long | 0.2460±0.0007 |
long-range-graph-benchmark | 0.2529±0.0016 |
long-range-graph-benchmark | 0.2683±0.0043 |
graph-transformers-without-positional | 0.2599 |
masked-attention-is-all-you-need-for-graphs | 0.2393±0.0004 |
long-range-graph-benchmark | 0.3496±0.0013 |
recipe-for-a-general-powerful-scalable-graph | 0.2500±0.0005 |
a-generalization-of-vit-mlp-mixer-to-graphs | 0.2475±0.0015 |
path-neural-networks-expressive-and-accurate | 0.2545±0.0032 |
masked-attention-is-all-you-need-for-graphs | 0.2453±0.0003 |
long-range-graph-benchmark | 0.3547±0.0045 |
ckgconv-general-graph-convolution-with | 0.2477 |
panda-expanded-width-aware-message-passing | 0.3272±0.0001 |
where-did-the-gap-go-reassessing-the-long | 0.2473±0.0017 |
where-did-the-gap-go-reassessing-the-long | 0.2509±0.0014 |
long-range-graph-benchmark | 0.3420±0.0013 |
a-generalization-of-vit-mlp-mixer-to-graphs | 0.2449±0.0016 |
graph-inductive-biases-in-transformers | 0.2460±0.0012 |
on-the-connection-between-mpnn-and-graph | 0.2488±0.0021 |
next-level-message-passing-with-hierarchical | 0.2421±0.0007 |
topology-informed-graph-transformer | 0.2485 |
unlocking-the-potential-of-classic-gnns-for | 0.2421 ± 0.0016 |
molecular-fingerprints-are-strong-models-for | 0.2438 |
multiresolution-graph-transformers-and | 0.2453±0.0025 |
simple-and-deep-graph-convolutional-networks-1 | 0.3471±0.0010 |
long-range-graph-benchmark | 0.3357±0.0006 |
long-range-graph-benchmark | 0.2545±0.0012 |