HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Graphenregression
Graph Regression On Peptides Struct
Graph Regression On Peptides Struct
Metriken
MAE
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
MAE
Paper Title
GINE
0.3547±0.0045
Long Range Graph Benchmark
GCN
0.3496±0.0013
Long Range Graph Benchmark
GCNII
0.3471±0.0010
Simple and Deep Graph Convolutional Networks
GatedGCN
0.3420±0.0013
Long Range Graph Benchmark
GatedGCN+RWSE
0.3357±0.0006
Long Range Graph Benchmark
GCN + PANDA
0.3272±0.0001
PANDA: Expanded Width-Aware Message Passing Beyond Rewiring
SAN+LapPE
0.2683±0.0043
Long Range Graph Benchmark
EIGENFORMER
0.2599
Graph Transformers without Positional Encodings
NPQ+GATv2
0.2589±0.0031
Neural Priority Queues for Graph Neural Networks
ViT-PS
0.2559
Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance
PathNN
0.2545±0.0032
Path Neural Networks: Expressive and Accurate Graph Neural Networks
SAN+RWSE
0.2545±0.0012
Long Range Graph Benchmark
DRew-GCN+LapPE
0.2536±0.0015
DRew: Dynamically Rewired Message Passing with Delay
Transformer+LapPE
0.2529±0.0016
Long Range Graph Benchmark
CIN++-500k
0.2523
CIN++: Enhancing Topological Message Passing
GPS-tuned
0.2509±0.0014
Where Did the Gap Go? Reassessing the Long-Range Graph Benchmark
BoP
0.25
From Primes to Paths: Enabling Fast Multi-Relational Graph Analysis
GPS
0.2500±0.0005
Recipe for a General, Powerful, Scalable Graph Transformer
TokenGT
0.2489±0.0013
Pure Transformers are Powerful Graph Learners
GCN+virtual node
0.2488±0.0021
On the Connection Between MPNN and Graph Transformer
0 of 39 row(s) selected.
Previous
Next
Graph Regression On Peptides Struct | SOTA | HyperAI