HyperAI

Grammatical Error Correction On Conll 2014

Metriken

F0.5
Precision
Recall

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameF0.5PrecisionRecall
gector-grammatical-error-correction-tag-not66.578.241.5
neural-quality-estimation-of-grammatical56.52--
approaching-neural-grammatical-error55.8--
lm-critic-language-models-for-unsupervised65.8--
improving-seq2seq-grammatical-error69.679.246.8
parallel-iterative-edit-models-for-local61.2--
unsupervised-grammatical-error-correction69.675.053.8
frustratingly-easy-system-combination-for69.5181.4843.78
an-empirical-study-of-incorporating-pseudo65.0--
near-human-level-performance-in-grammatical56.25--
stronger-baselines-for-grammatical-error63.069.945.1
pillars-of-grammatical-error-correction71.883.745.7
syngec-syntax-enhanced-grammatical-error67.674.749.0
gector-grammatical-error-correction-tag-not65.377.540.1
system-combination-via-quality-estimation-for71.1279.649.86
improving-grammatical-error-correction-via61.1571.5738.65
a-simple-recipe-for-multilingual-grammatical68.87--
a-multilayer-convolutional-encoder-decoder54.79--
pillars-of-grammatical-error-correction72.883.947.5
parallel-iterative-edit-models-for-local59.7--
encoder-decoder-models-can-benefit-from-pre65.2--
neural-quality-estimation-with-multiple63.7--
efficient-and-interpretable-grammatical-error67.7974.2950.21