HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Gesichtsausdruckserkennung
Facial Expression Recognition On Raf Db
Facial Expression Recognition On Raf Db
Metriken
Overall Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Overall Accuracy
Paper Title
ResEmoteNet
94.76
ResEmoteNet: Bridging Accuracy and Loss Reduction in Facial Emotion Recognition
FMAE
93.09
Representation Learning and Identity Adversarial Training for Facial Behavior Understanding
QCS
93.02
QCS: Feature Refining from Quadruplet Cross Similarity for Facial Expression Recognition
Norface
92.97
Norface: Improving Facial Expression Analysis by Identity Normalization
S2D
92.57
From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos
BTN
92.54
Batch Transformer: Look for Attention in Batch
GReFEL
92.47
GReFEL: Geometry-Aware Reliable Facial Expression Learning under Bias and Imbalanced Data Distribution
DDAMFN++
92.34
A Dual-Direction Attention Mixed Feature Network for Facial Expression Recognition
DCJT
92.24
Joint Training on Multiple Datasets With Inconsistent Labeling Criteria for Facial Expression Recognition
POSTER++
92.21
POSTER++: A simpler and stronger facial expression recognition network
APViT
91.98
Vision Transformer with Attentive Pooling for Robust Facial Expression Recognition
DDAMFN
91.35
A Dual-Direction Attention Mixed Feature Network for Facial Expression Recognition
ViT-base + MAE
91.07
Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers
LFNSB
91.07
A Lightweight Model Enhancing Facial Expression Recognition with Spatial Bias and Cosine-Harmony Loss
EAC(ResNet-50)
90.35
Learn From All: Erasing Attention Consistency for Noisy Label Facial Expression Recognition
Ada-DF
90.04
A Dual-Branch Adaptive Distribution Fusion Framework for Real-World Facial Expression Recognition
DAN
89.70
Distract Your Attention: Multi-head Cross Attention Network for Facial Expression Recognition
RUL (ResNet-18)
88.98
Relative Uncertainty Learning for Facial Expression Recognition
PSR
88.98
Pyramid With Super Resolution for In-the-Wild Facial Expression Recognition
FerNeXt
88.56
FerNeXt: Facial Expression Recognition Using ConvNeXt with Channel Attention
0 of 34 row(s) selected.
Previous
Next
Facial Expression Recognition On Raf Db | SOTA | HyperAI