HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Emotionserkennung im Gespräch
Emotion Recognition In Conversation On Meld
Emotion Recognition In Conversation On Meld
Metriken
Accuracy
Weighted-F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Weighted-F1
Paper Title
ELR-GNN
68.7
69.9
Efficient Long-distance Latent Relation-aware Graph Neural Network for Multi-modal Emotion Recognition in Conversations
BiosERC
-
69.83
BiosERC: Integrating Biography Speakers Supported by LLMs for ERC Tasks
CKERC
-
69.27
LaERC-S: Improving LLM-based Emotion Recognition in Conversation with Speaker Characteristics
InstructERC
-
69.15
InstructERC: Reforming Emotion Recognition in Conversation with Multi-task Retrieval-Augmented Large Language Models
GS-MCC
68.1
69.0
Revisiting Multimodal Emotion Recognition in Conversation from the Perspective of Graph Spectrum
SpeechCueLLM
-
67.604
Beyond Silent Letters: Amplifying LLMs in Emotion Recognition with Vocal Nuances
Mamba-like Model
68.0
67.6
Revisiting Multi-modal Emotion Learning with Broad State Space Models and Probability-guidance Fusion
TelME
-
67.37
TelME: Teacher-leading Multimodal Fusion Network for Emotion Recognition in Conversation
SPCL-CL-ERC
-
67.25
Supervised Prototypical Contrastive Learning for Emotion Recognition in Conversation
EACL
-
67.12
Emotion-Anchored Contrastive Learning Framework for Emotion Recognition in Conversation
DF-ERC
68.28
67.03
Revisiting Disentanglement and Fusion on Modality and Context in Conversational Multimodal Emotion Recognition
HiDialog
-
66.96
Hierarchical Dialogue Understanding with Special Tokens and Turn-level Attention
SACL-LSTM (one seed)
67.89
66.86
Supervised Adversarial Contrastive Learning for Emotion Recognition in Conversations
FacialMMT
-
66.73
A Facial Expression-Aware Multimodal Multi-task Learning Framework for Emotion Recognition in Multi-party Conversations
M2FNet
67.85
66.71
M2FNet: Multi-modal Fusion Network for Emotion Recognition in Conversation
GraphSmile
67.70
66.71
Tracing Intricate Cues in Dialogue: Joint Graph Structure and Sentiment Dynamics for Multimodal Emotion Recognition
CFN-ESA
67.85
66.70
CFN-ESA: A Cross-Modal Fusion Network with Emotion-Shift Awareness for Dialogue Emotion Recognition
SDT
67.55
66.60
A Transformer-Based Model With Self-Distillation for Multimodal Emotion Recognition in Conversations
CoMPM
-
66.52
CoMPM: Context Modeling with Speaker's Pre-trained Memory Tracking for Emotion Recognition in Conversation
EmotionFlow-large
-
66.50
EmotionFlow: Capture the Dialogue Level Emotion Transitions
0 of 67 row(s) selected.
Previous
Next
Emotion Recognition In Conversation On Meld | SOTA | HyperAI