Drug Discovery On Muv
Metriken
AUC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Modellname | AUC | Paper Title | Repository |
---|---|---|---|
GraphConv | 0.836 | Convolutional Networks on Graphs for Learning Molecular Fingerprints | |
ContextPred | 0.813 | Strategies for Pre-training Graph Neural Networks | - |
GraphConv + dummy super node | 0.845 | Learning Graph-Level Representation for Drug Discovery | |
RNN-DFS | 0.648 | Relational Pooling for Graph Representations | |
TrimNet | 0.851 | TrimNet: learning molecular representation from triplet messages for biomedicine |
0 of 5 row(s) selected.