Drug Discovery On Bace
Metriken
AUC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
| Paper Title | ||
|---|---|---|
| TrimNet | 0.878 | TrimNet: learning molecular representation from triplet messages for biomedicine |
| Ensemble locally constant network | 0.874 | Oblique Decision Trees from Derivatives of ReLU Networks |
| ProtoW-L2 | 0.873 | Optimal Transport Graph Neural Networks |
| elEmBERT-V1 | 0.856 | Structure to Property: Chemical Element Embeddings and a Deep Learning Approach for Accurate Prediction of Chemical Properties |
| ContextPred | 0.845 | Strategies for Pre-training Graph Neural Networks |
| GIT-Mol(G+S) | 0.8108 | GIT-Mol: A Multi-modal Large Language Model for Molecular Science with Graph, Image, and Text |
0 of 6 row(s) selected.