Document Classification On Reuters 21578
Metriken
F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | F1 |
---|---|
magnet-multi-label-text-classification-using | 89.9 |
vector-of-locally-aggregated-word-embeddings | 89.3 |
rep-the-set-neural-networks-for-learning-set | - |
rethinking-complex-neural-network | 87.0 |
speeding-up-word-movers-distance-and-its | - |
docbert-bert-for-document-classification | 88.9 |
improving-document-classification-with-multi | 82.71 |
text-classification-with-word-embedding | - |