HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Datenverstärkung
Data Augmentation On Imagenet
Data Augmentation On Imagenet
Metriken
Accuracy (%)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy (%)
Paper Title
DeiT-B (+MixPro)
82.9
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
ResNet-200 (DeepAA)
81.32
Deep AutoAugment
DeiT-S (+MixPro)
81.3
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
ResNet-200 (Fast AA)
80.6
Fast AutoAugment
ResNet-200 (UA)
80.4
UniformAugment: A Search-free Probabilistic Data Augmentation Approach
ResNet-200 (AA)
80.0
AutoAugment: Learning Augmentation Policies from Data
ResNet-50 (DeepAA)
78.30
Deep AutoAugment
ResNet-50 (TA wide)
78.07
TrivialAugment: Tuning-free Yet State-of-the-Art Data Augmentation
ResNet-50 (LoRot-E)
77.72
Tailoring Self-Supervision for Supervised Learning
ResNet-50 (LoRot-I)
77.71
Tailoring Self-Supervision for Supervised Learning
ResNet-50 (UA)
77.63
UniformAugment: A Search-free Probabilistic Data Augmentation Approach
ResNet-50 (RA)
77.6
RandAugment: Practical automated data augmentation with a reduced search space
ResNet-50 (AA)
77.6
AutoAugment: Learning Augmentation Policies from Data
ResNet-50 (Fast AA)
77.6
Fast AutoAugment
ResNet-50 (DADA)
77.5
DADA: Differentiable Automatic Data Augmentation
ResNet-50 (Faster AA)
76.5
Faster AutoAugment: Learning Augmentation Strategies using Backpropagation
DeiT-T (+MixPro)
73.8
MixPro: Data Augmentation with MaskMix and Progressive Attention Labeling for Vision Transformer
0 of 17 row(s) selected.
Previous
Next
Data Augmentation On Imagenet | SOTA | HyperAI