HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Kontinuierliches Lernen
Continual Learning On Visual Domain Decathlon
Continual Learning On Visual Domain Decathlon
Metriken
decathlon discipline (Score)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
decathlon discipline (Score)
Paper Title
Repository
Res. adapt. finetune all
2643
Learning multiple visual domains with residual adapters
-
Piggyback
2838
Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights
-
Res. adapt.
2118
Learning multiple visual domains with residual adapters
-
DAN
2851
Incremental Learning Through Deep Adaptation
-
Res. adapt. decay
2621
Learning multiple visual domains with residual adapters
-
NetTailor
3744
NetTailor: Tuning the Architecture, Not Just the Weights
-
Res. adapt. dom-pred
2503
Learning multiple visual domains with residual adapters
-
Series Res. adapt.
3159
Efficient parametrization of multi-domain deep neural networks
-
LwF
2515
Learning without Forgetting
-
BN adapt.
1363
Universal representations:The missing link between faces, text, planktons, and cat breeds
-
Res. adapt. (large)
3131
Learning multiple visual domains with residual adapters
-
Depthwise Sharing
3234
Depthwise Convolution is All You Need for Learning Multiple Visual Domains
-
Depthwise Soft Sharing
3507
Depthwise Convolution is All You Need for Learning Multiple Visual Domains
-
Parallel Res. adapt.
3412
Efficient parametrization of multi-domain deep neural networks
-
0 of 14 row(s) selected.
Previous
Next
Continual Learning On Visual Domain Decathlon | SOTA | HyperAI