Continual Learning On Cubs Fine Grained 6
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Accuracy |
---|---|
helpful-or-harmful-inter-task-association-in | 84.1 |
extending-conditional-convolution-structures | 84.26 |
progressive-neural-networks | 78.94 |
piggyback-adapting-a-single-network-to | 80.5 |
compacting-picking-and-growing-for | 83.59 |
packnet-adding-multiple-tasks-to-a-single | 80.41 |