HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Atari Games
Atari Games On Atari 2600 Solaris
Atari Games On Atari 2600 Solaris
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Score
Paper Title
Repository
CGP
8324
Evolving simple programs for playing Atari games
R2D2
3787.2
Recurrent Experience Replay in Distributed Reinforcement Learning
-
MuZero (Res2 Adam)
5132.95
Online and Offline Reinforcement Learning by Planning with a Learned Model
DNA
2225
DNA: Proximal Policy Optimization with a Dual Network Architecture
NoisyNet-Dueling
6522
Noisy Networks for Exploration
SND-VIC
11865
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
GDI-H3
9105
Generalized Data Distribution Iteration
-
MuZero
56.62
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
IMPALA (deep)
2365.00
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
GDI-I3
11074
Generalized Data Distribution Iteration
-
GDI-I3
11074
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
-
RND
3282
Exploration by Random Network Distillation
Advantage Learning
4785.16
Increasing the Action Gap: New Operators for Reinforcement Learning
SND-STD
12460
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
Ape-X
2892.9
Distributed Prioritized Experience Replay
IQN
8007
Implicit Quantile Networks for Distributional Reinforcement Learning
ASL DDQN
3506.8
Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
-
DreamerV2
922
Mastering Atari with Discrete World Models
SND-V
11582
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
Go-Explore
19671
First return, then explore
0 of 23 row(s) selected.
Previous
Next