HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Atari Games
Atari Games On Atari 2600 Gravitar
Atari Games On Atari 2600 Gravitar
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Score
Paper Title
Repository
SARSA
429.0
-
-
CGP
2350
Evolving simple programs for playing Atari games
Nature DQN
306.7
Human level control through deep reinforcement learning
ES FF (1 hour) noop
805.0
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Agent57
19213.96
Agent57: Outperforming the Atari Human Benchmark
SND-STD
4643
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
MuZero
6682.70
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
SND-V
2741
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
SND-VIC
6712
Self-supervised network distillation: an effective approach to exploration in sparse reward environments
A2C + SIL
1874.2
Self-Imitation Learning
A3C LSTM hs
320.0
Asynchronous Methods for Deep Reinforcement Learning
GDI-I3
5905
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
-
DQNMMCe
1078.3
Count-Based Exploration with the Successor Representation
DDQN+Pop-Art noop
483.5
Learning values across many orders of magnitude
-
Duel noop
588.0
Dueling Network Architectures for Deep Reinforcement Learning
MuZero (Res2 Adam)
8006.93
Online and Offline Reinforcement Learning by Planning with a Learned Model
DQN hs
298.0
Deep Reinforcement Learning with Double Q-learning
IMPALA (deep)
359.50
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
C51 noop
440.0
A Distributional Perspective on Reinforcement Learning
GDI-H3
5915
Generalized Data Distribution Iteration
-
0 of 53 row(s) selected.
Previous
Next