HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Anomalieerkennung
Anomaly Detection On Unlabeled Cifar 10 Vs
Anomaly Detection On Unlabeled Cifar 10 Vs
Metriken
AUROC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUROC
Paper Title
Repository
Input Complexity (PixelCNN++)
53.5
Input complexity and out-of-distribution detection with likelihood-based generative models
SSD
89.6
SSD: A Unified Framework for Self-Supervised Outlier Detection
MeanShifted
90.0
Mean-Shifted Contrastive Loss for Anomaly Detection
Likelihood (Glow)
58.2
Input complexity and out-of-distribution detection with likelihood-based generative models
PsudoLabels ResNet-18
90.8
Out-of-Distribution Detection Without Class Labels
-
CSI
89.3
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
PsudoLabels ViT
96.7
Out-of-Distribution Detection Without Class Labels
-
PsudoLabels ResNet-152
93.3
Out-of-Distribution Detection Without Class Labels
-
Likelihood (PixelCNN++)
52.6
Input complexity and out-of-distribution detection with likelihood-based generative models
SCAN Features
90.2
Out-of-Distribution Detection Without Class Labels
-
Input Complexity (Glow)
73.6
Input complexity and out-of-distribution detection with likelihood-based generative models
GOAD
89.2
Classification-Based Anomaly Detection for General Data
MTL
82.92
Shifting Transformation Learning for Out-of-Distribution Detection
-
0 of 13 row(s) selected.
Previous
Next