Anomaly Detection On Ucsd Ped2
Metriken
AUC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | AUC |
---|---|
context-recovery-and-knowledge-retrieval-a | 97.1% |
a-scene-agnostic-framework-with-adversarial | 98.7% |
spatio-temporal-predictive-tasks-for-abnormal | 98.9% |
diversity-measurable-anomaly-detection | 99.7% |
self-distilled-masked-auto-encoders-are | 95.4% |
making-anomalies-more-anomalous-video-anomaly | 98.2% |
vald-gan-video-anomaly-detection-using-latent | 97.74 |
attention-based-residual-autoencoder-for | 97.4% |
fastano-fast-anomaly-detection-via-spatio | 96.3% |
stemgan-spatio-temporal-generative | 97.5 |
follow-the-rules-reasoning-for-video-anomaly | 97.9% |
mulde-multiscale-log-density-estimation-via | 99.7% |
diversity-measurable-anomaly-detection | 90.2% |