HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Anomalieerkennung
Anomaly Detection On Ubnormal
Anomaly Detection On Ubnormal
Metriken
AUC
RBDC
TBDC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUC
RBDC
TBDC
Paper Title
Repository
Background-Agnostic Framework
61.3%
25.43
56.27
A Background-Agnostic Framework with Adversarial Training for Abnormal Event Detection in Video
TimeSformer
68.5%
0.04
0.05
Is Space-Time Attention All You Need for Video Understanding?
AnomalyRuler
71.9%
-
-
Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models
MULDE-frame-centric-micro-one-class-classification
72.8%
-
-
MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection
COSKAD-euclidean
64.9%
-
-
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
MIL
50.3%
0.002
0.001
Real-world Anomaly Detection in Surveillance Videos
STG-NF - Unsupervised
71.8%
-
-
Normalizing Flows for Human Pose Anomaly Detection
COSKAD-radial
62.9%
-
-
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
COSKAD-hyperbolic
65%
-
-
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
BiPOCO
50.7
-
-
BiPOCO: Bi-Directional Trajectory Prediction with Pose Constraints for Pedestrian Anomaly Detection
FPDM
62.7
-
-
Feature Prediction Diffusion Model for Video Anomaly Detection
-
SSMTL++v1
62.1%
25.63
63.53
SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video Anomaly Detection
-
STG-NF - Supervised
79.2%
-
-
Normalizing Flows for Human Pose Anomaly Detection
MoCoDAD
68.3%
-
-
Multimodal Motion Conditioned Diffusion Model for Skeleton-based Video Anomaly Detection
0 of 14 row(s) selected.
Previous
Next