Anomaly Detection On Shanghaitech
Metriken
AUC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | AUC |
---|---|
follow-the-rules-reasoning-for-video-anomaly | 85.2% |
videopatchcore-an-effective-method-to | 85.1% |
an-exploratory-study-on-human-centric-video | 80.6% |
bounding-boxes-and-probabilistic-graphical | 61.28% |
eval-explainable-video-anomaly-localization | 76.63% |
ubnormal-new-benchmark-for-supervised-open | 83.7% |
learning-regularity-in-skeleton-trajectories | 73.40% |
video-anomaly-detection-by-solving-decoupled | 84.3% |
multi-timescale-trajectory-prediction-for | 76.03% |
any-shot-sequential-anomaly-detection-in | 71.6% |
self-supervised-predictive-convolutional | 83.6% |
ssmtl-revisiting-self-supervised-multi-task | 83.8% |
stan-spatio-temporal-adversarial-networks-for | 76.2% |
attention-based-residual-autoencoder-for | 73.6 |
context-recovery-and-knowledge-retrieval-a | 83.7% |
a-revisit-of-sparse-coding-based-anomaly | 68.0% |
spatio-temporal-predictive-tasks-for-abnormal | 77.1% |
diversity-measurable-anomaly-detection | 78.8% |
divide-and-conquer-in-video-anomaly-detection | 87.72% |
mulde-multiscale-log-density-estimation-via | 86.7% |
attribute-based-representations-for-accurate | 85.94% |
mulde-multiscale-log-density-estimation-via | 81.3% |
ssmtl-revisiting-self-supervised-multi-task | 82.9% |
anomaly-detection-in-video-via-self | 82.4% |
regularity-learning-via-explicit-distribution | 83.35 |
a-scene-agnostic-framework-with-adversarial | 82.7% |
self-supervised-masked-convolutional | 83.6% |
self-supervised-predictive-convolutional | - |
making-anomalies-more-anomalous-video-anomaly | 76.5% |
object-centric-auto-encoders-and-dummy | 78.7% |
normalizing-flows-for-human-pose-anomaly | 85.9% |