HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Anomalieerkennung
Anomaly Detection On One Class Imagenet 30
Anomaly Detection On One Class Imagenet 30
Metriken
AUROC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUROC
Paper Title
Repository
RotNet + Translation
77.9
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
RotNet + Translation + Self-Attention
84.8
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
RotNet
65.3
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
CSI
91.6
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
-
RotNet + Translation + Self-Attention + Resize
85.7
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
FCDD
91
Explainable Deep One-Class Classification
-
CLIP (Zero Shot)
99.88
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
-
BCE-Clip (OE)
99.90
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
-
RotNet + Self-Attention
81.6
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
Supervised (OE)
56.1
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
-
Binary Cross Entropy (OE)
97.7
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
-
0 of 11 row(s) selected.
Previous
Next