HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Anomalieerkennung
Anomaly Detection On One Class Imagenet 30
Anomaly Detection On One Class Imagenet 30
Metriken
AUROC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUROC
Paper Title
Repository
RotNet + Translation
77.9
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet + Translation + Self-Attention
84.8
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet
65.3
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
CSI
91.6
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
RotNet + Translation + Self-Attention + Resize
85.7
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
FCDD
91
Explainable Deep One-Class Classification
CLIP (Zero Shot)
99.88
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
BCE-Clip (OE)
99.90
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
RotNet + Self-Attention
81.6
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Supervised (OE)
56.1
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Binary Cross Entropy (OE)
97.7
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
0 of 11 row(s) selected.
Previous
Next
Anomaly Detection On One Class Imagenet 30 | SOTA | HyperAI