HyperAI
HyperAI
Startseite
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Seite durchsuchen…
⌘
K
Startseite
SOTA
Anomalieerkennung
Anomaly Detection On One Class Cifar 100
Anomaly Detection On One Class Cifar 100
Metriken
AUROC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUROC
Paper Title
Repository
GeneralAD
98.4
GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features
-
Transformaly
97.7
Transformaly -- Two (Feature Spaces) Are Better Than One
-
DisAug CLR
86.5
Learning and Evaluating Representations for Deep One-class Classification
-
PANDA-OE
97.3
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
-
Self-Supervised Multi-Head RotNet
80.1
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
-
GAN based Anomaly Detection in Imbalance Problems
87.4
GAN-based Anomaly Detection in Imbalance Problems
-
DUIAD
86
Deep Unsupervised Image Anomaly Detection: An Information Theoretic Framework
-
Geom
78.7
Deep Anomaly Detection Using Geometric Transformations
-
Self-Supervised One-class SVM, RBF kernel
62.6
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
-
Self-Supervised DeepSVDD
67
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
-
Mean-Shifted Contrastive Loss
96.5
Mean-Shifted Contrastive Loss for Anomaly Detection
-
Rotation Prediction
84.1
Learning and Evaluating Representations for Deep One-class Classification
-
MTL
83.95
Shifting Transformation Learning for Out-of-Distribution Detection
-
CSI
89.6
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
-
PANDA
94.1
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
-
0 of 15 row(s) selected.
Previous
Next