HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Anomalieerkennung
Anomaly Detection On One Class Cifar 100
Anomaly Detection On One Class Cifar 100
Metriken
AUROC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUROC
Paper Title
Repository
GeneralAD
98.4
GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features
Transformaly
97.7
Transformaly -- Two (Feature Spaces) Are Better Than One
DisAug CLR
86.5
Learning and Evaluating Representations for Deep One-class Classification
PANDA-OE
97.3
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Self-Supervised Multi-Head RotNet
80.1
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
GAN based Anomaly Detection in Imbalance Problems
87.4
GAN-based Anomaly Detection in Imbalance Problems
-
DUIAD
86
Deep Unsupervised Image Anomaly Detection: An Information Theoretic Framework
-
Geom
78.7
Deep Anomaly Detection Using Geometric Transformations
Self-Supervised One-class SVM, RBF kernel
62.6
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Self-Supervised DeepSVDD
67
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
Mean-Shifted Contrastive Loss
96.5
Mean-Shifted Contrastive Loss for Anomaly Detection
Rotation Prediction
84.1
Learning and Evaluating Representations for Deep One-class Classification
MTL
83.95
Shifting Transformation Learning for Out-of-Distribution Detection
-
CSI
89.6
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
PANDA
94.1
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
0 of 15 row(s) selected.
Previous
Next