HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Anomalieerkennung
Anomaly Detection On One Class Cifar 10
Anomaly Detection On One Class Cifar 10
Metriken
AUROC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUROC
Paper Title
Repository
GAN based Anomaly Detection in Imbalance Problems
90.6
GAN-based Anomaly Detection in Imbalance Problems
-
FCDD
92
Explainable Deep One-Class Classification
IGD (pre-trained SSL)
91.25
Deep One-Class Classification via Interpolated Gaussian Descriptor
GeneralAD
99.3
GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features
GOAD
88.2
Classification-Based Anomaly Detection for General Data
DINO-FT
98.4
Anomaly Detection Requires Better Representations
SSOOD
90.1
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
CSI
94.3
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
ARNET
86.6
Attribute Restoration Framework for Anomaly Detection
PANDA
96.2
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
DN2
92.5
Deep Nearest Neighbor Anomaly Detection
-
IGD (scratch)
74.33
Deep One-Class Classification via Interpolated Gaussian Descriptor
DisAug CLR
92.5
Learning and Evaluating Representations for Deep One-class Classification
SSD
90.0
SSD: A Unified Framework for Self-Supervised Outlier Detection
Self-Supervised One-class SVM, RBF kernel
64.7
PANDA: Adapting Pretrained Features for Anomaly Detection and Segmentation
OLED
67.1
OLED: One-Class Learned Encoder-Decoder Network with Adversarial Context Masking for Novelty Detection
Transformaly
98.3
Transformaly -- Two (Feature Spaces) Are Better Than One
Mean-Shifted Contrastive Loss
98.6
Mean-Shifted Contrastive Loss for Anomaly Detection
UTAD
88.4
Unsupervised Two-Stage Anomaly Detection
-
CLIP (OE)
99.6
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
0 of 36 row(s) selected.
Previous
Next