HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Anomalieerkennung
Anomaly Detection On Leave One Class Out
Anomaly Detection On Leave One Class Out
Metriken
AUROC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUROC
Paper Title
Repository
CLIP (zero shot)
92.2
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
DSVDD
52.2
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
DSAD
84.2
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
BCE-CLIP
98.4
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
HSC
84.8
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
Binary Cross Entropy (OE)
86.6
Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
0 of 6 row(s) selected.
Previous
Next