HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Anomaly Detection In Surveillance Videos
Anomaly Detection In Surveillance Videos On
Anomaly Detection In Surveillance Videos On
Metriken
Decidability
EER
ROC AUC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Decidability
EER
ROC AUC
Paper Title
Repository
GMM-based
0.885
0.302
75.90
Weakly and Partially Supervised Learning Frameworks for Anomaly Detection
CR-UNet
-
-
85.24
Contrastive-Regularized U-Net for Video Anomaly Detection
-
STEAD-Fast
-
-
88.87
-
-
MULDE-frame-centric-micro-one-class-classification
-
-
78.5%
MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection
STEAD-Base
-
-
91.34
-
-
Multi-stream Network with Late Fuzzy Fusion
-
-
84.48
A multi-stream deep neural network with late fuzzy fusion for real-world anomaly detection
-
MGFN
-
-
86.98
MGFN: Magnitude-Contrastive Glance-and-Focus Network for Weakly-Supervised Video Anomaly Detection
MIST
-
-
82.30
MIST: Multiple Instance Self-Training Framework for Video Anomaly Detection
Sultani et al.
0.613
0.353
75.41
Real-world Anomaly Detection in Surveillance Videos
MILR
-
-
76.67
3D ResNet with Ranking Loss Function for Abnormal Activity Detection in Videos
-
PEL
-
-
86.76
Learning Prompt-Enhanced Context Features for Weakly-Supervised Video Anomaly Detection
RTFM
-
-
84.03
Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning
S3R
-
-
85.99
Self-supervised Sparse Representation for Video Anomaly Detection
Multiple-Instance-Based-Video-Anomaly-Detection-Using-Deep-Temporal-Encoding-Decoding
-
-
80.10
Multiple Instance-Based Video Anomaly Detection using Deep Temporal Encoding-Decoding
BN-WVAD
-
-
87.24
BatchNorm-based Weakly Supervised Video Anomaly Detection
DMRMs
-
-
81.91
Anomalous Event Recognition in Videos Based on Joint Learningof Motion and Appearance with Multiple Ranking Measures
-
WSAL
-
-
85.38
Localizing Anomalies from Weakly-Labeled Videos
0 of 17 row(s) selected.
Previous
Next