Action Recognition In Videos On Jester 1
Metriken
Val
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Modellname | Val | Paper Title | Repository |
---|---|---|---|
DIN | 95.31 | DenseImage Network: Video Spatial-Temporal Evolution Encoding and Understanding | - |
STM (Resnet-50, 16 frames) | 96.7 | STM: SpatioTemporal and Motion Encoding for Action Recognition | - |
3D-ShuffleNetV2 0.25x | 86.91 | Resource Efficient 3D Convolutional Neural Networks | |
MultiScale TRN | 95.31 | Temporal Relational Reasoning in Videos | |
convSTAR | 92.7 | Gating Revisited: Deep Multi-layer RNNs That Can Be Trained | |
CPNet Res34, 5 CP | 96.7 | Learning Video Representations from Correspondence Proposals | |
MFNet | 96.68 | Motion Feature Network: Fixed Motion Filter for Action Recognition | - |
3D-SqueezeNet | 90.77 | Resource Efficient 3D Convolutional Neural Networks | |
3D-MobileNetV2 0.2x | 86.43 | Resource Efficient 3D Convolutional Neural Networks |
0 of 9 row(s) selected.