HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Sechsdimensionale-Pose-Schätzung mittels RGB
6D Pose Estimation Using Rgb On Occlusion
6D Pose Estimation Using Rgb On Occlusion
Metriken
Mean ADD
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Mean ADD
Paper Title
SO-Pose
62.3
SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation
RNNPose (Trained with synthetic data and LINEMOD training set, w/o pbr data)
60.65
RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust Correspondence Field Estimation and Pose Optimization
GDR-Net
56.1
GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator
DeepIM (Train on Occlusion LineMOD)
55.5
DeepIM: Deep Iterative Matching for 6D Pose Estimation
PPC (Refined from initial PVNet pose)
55.33
Pose Proposal Critic: Robust Pose Refinement by Learning Reprojection Errors
RePOSE
51.6
RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering
HybridPose
47.5
HybridPose: 6D Object Pose Estimation under Hybrid Representations
E2E6DoF
47.4
End-to-End Differentiable 6DoF Object Pose Estimation with Local and Global Constraints
DPOD
47.25
DPOD: 6D Pose Object Detector and Refiner
ROPE
45.95
Occlusion-Robust Object Pose Estimation with Holistic Representation
PVNet
40.77
PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation
SegDriven
27
Segmentation-driven 6D Object Pose Estimation
CullNet
24.48
CullNet: Calibrated and Pose Aware Confidence Scores for Object Pose Estimation
0 of 13 row(s) selected.
Previous
Next
6D Pose Estimation Using Rgb On Occlusion | SOTA | HyperAI