HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
6D Pose Estimation
6D Pose Estimation Using Rgb On Occlusion
6D Pose Estimation Using Rgb On Occlusion
Metriken
Mean ADD
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Mean ADD
Paper Title
Repository
ROPE
45.95
Occlusion-Robust Object Pose Estimation with Holistic Representation
CullNet
24.48
CullNet: Calibrated and Pose Aware Confidence Scores for Object Pose Estimation
E2E6DoF
47.4
End-to-End Differentiable 6DoF Object Pose Estimation with Local and Global Constraints
-
DPOD
47.25
DPOD: 6D Pose Object Detector and Refiner
HybridPose
47.5
HybridPose: 6D Object Pose Estimation under Hybrid Representations
SegDriven
27
Segmentation-driven 6D Object Pose Estimation
PVNet
40.77
PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation
RePOSE
51.6
RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering
RNNPose (Trained with synthetic data and LINEMOD training set, w/o pbr data)
60.65
RNNPose: Recurrent 6-DoF Object Pose Refinement with Robust Correspondence Field Estimation and Pose Optimization
-
GDR-Net
56.1
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation
DeepIM (Train on Occlusion LineMOD)
55.5
DeepIM: Deep Iterative Matching for 6D Pose Estimation
PPC (Refined from initial PVNet pose)
55.33
Pose Proposal Critic: Robust Pose Refinement by Learning Reprojection Errors
-
SO-Pose
62.3
SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation
0 of 13 row(s) selected.
Previous
Next