HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
3D Semantic Segmentation
3D Semantic Segmentation On Sensaturban
3D Semantic Segmentation On Sensaturban
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
Repository
TangentConv
33.30
Tangent Convolutions for Dense Prediction in 3D
SPGraph
37.29
Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs
LCPFormer
63.4
LCPFormer: Towards Effective 3D Point Cloud Analysis via Local Context Propagation in Transformers
KPConv
57.58
KPConv: Flexible and Deformable Convolution for Point Clouds
SparseConv
42.66
3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
EyeNet
62.30
Human Vision Based 3D Point Cloud Semantic Segmentation of Large-Scale Outdoor Scene
SCF-Net
55.1
SCF-Net: Learning Spatial Contextual Features for Large-Scale Point Cloud Segmentation
BEV-Seg3D-Net
61.7
Efficient Urban-scale Point Clouds Segmentation with BEV Projection
0 of 8 row(s) selected.
Previous
Next