HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
3D Object Detection
3D Object Detection On Nuscenes Camera Only
3D Object Detection On Nuscenes Camera Only
Metriken
Future Frame
NDS
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Future Frame
NDS
Paper Title
Repository
Far3D
false
68.7
Far3D: Expanding the Horizon for Surround-view 3D Object Detection
BEVDet4D
false
56.9
BEVDet4D: Exploit Temporal Cues in Multi-camera 3D Object Detection
CAPE
false
62.8
CAPE: Camera View Position Embedding for Multi-View 3D Object Detection
BEVDepth-pure
false
60.9
BEVDepth: Acquisition of Reliable Depth for Multi-view 3D Object Detection
PETRv2-pure
false
59.2
PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images
SA-BEV
false
62.4
SA-BEV: Generating Semantic-Aware Bird's-Eye-View Feature for Multi-view 3D Object Detection
SOLOFusion-pure
false
61.9
Time Will Tell: New Outlooks and A Baseline for Temporal Multi-View 3D Object Detection
StreamPETR-Large
false
67.6
Exploring Object-Centric Temporal Modeling for Efficient Multi-View 3D Object Detection
HoP
yes
68.5
Temporal Enhanced Training of Multi-view 3D Object Detector via Historical Object Prediction
BEVStereo
false
61.0
BEVStereo: Enhancing Depth Estimation in Multi-view 3D Object Detection with Dynamic Temporal Stereo
RayDN
false
68.6
Ray Denoising: Depth-aware Hard Negative Sampling for Multi-view 3D Object Detection
BEVDistill
false
59.4
BEVDistill: Cross-Modal BEV Distillation for Multi-View 3D Object Detection
PolarFormer
false
57.2
PolarFormer: Multi-camera 3D Object Detection with Polar Transformer
SparseBEV (V2-99)
yes
67.5
SparseBEV: High-Performance Sparse 3D Object Detection from Multi-Camera Videos
GeoBEV (V2-99)
false
66.2
GeoBEV: Learning Geometric BEV Representation for Multi-view 3D Object Detection
BEVFormer v2 (InternImage-XL)
yes
63.4
BEVFormer v2: Adapting Modern Image Backbones to Bird's-Eye-View Recognition via Perspective Supervision
VCD-A
false
67.2
Leveraging Vision-Centric Multi-Modal Expertise for 3D Object Detection
SeaBird
false
59.7
SeaBird: Segmentation in Bird's View with Dice Loss Improves Monocular 3D Detection of Large Objects
BEVFormer
false
56.9
BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers
0 of 19 row(s) selected.
Previous
Next