HyperAI

3D Object Detection On Nuscenes

Metriken

NDS
mAAE
mAOE
mAP
mASE
mATE
mAVE

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Modellname
NDS
mAAE
mAOE
mAP
mASE
mATE
mAVE
Paper TitleRepository
xin.lu.20.520.130.420.430.260.60.5--
LargeKernel-F0.740.130.30.710.230.240.24--
pcd_lidar_990.70.130.340.640.240.260.22--
MVP0.710.130.320.660.240.260.31Multimodal Virtual Point 3D Detection
3D Dual-Fusion0.710.120.360.680.240.270.26--
SECOND + PointPillars0.180.590.960.090.420.71.0--
pointpainting0.610.130.540.540.260.380.29--
TiG-BEV0.620.130.340.530.240.450.31--
weareateam0.380.180.540.30.270.721.17--
Deeplearner0.730.130.340.710.240.250.26--
BEVFusion0.720.130.370.690.250.260.27--
Vidar0.450.130.440.380.250.631.48--
CenterFusion0.450.110.520.330.260.630.61--
PGD0.45--0.39---Probabilistic and Geometric Depth: Detecting Objects in Perspective
DAMEN0.580.120.390.460.250.460.33--
picolo0.710.120.370.670.240.270.27--
ASCNet-1-5s0.570.140.420.450.250.320.42--
obj_40.590.140.380.510.260.450.39--
yangfan2930.610.150.430.540.260.40.36--
Radiant0.580.420.330.620.240.281.35--
0 of 372 row(s) selected.