HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
3D-Objekterkennung
3D Object Detection On Kitti Pedestrians
3D Object Detection On Kitti Pedestrians
Metriken
AP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AP
Paper Title
Repository
HotSpotNet
44.81%
Object as Hotspots: An Anchor-Free 3D Object Detection Approach via Firing of Hotspots
-
SVGA-Net
47.71%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
IPOD
44.68%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
Frustum PointNets
42.15%
Frustum PointNets for 3D Object Detection from RGB-D Data
-
3D-FCT
58.4%
3D-FCT: Simultaneous 3D Object Detection and Tracking Using Feature Correlation
-
STD
44.24%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
M3DeTR
41.02%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
-
AVOD + Feature Pyramid
42.81%
Joint 3D Proposal Generation and Object Detection from View Aggregation
-
VoxelNet
33.69%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
-
F-ConvNet
43.38%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
-
Frustrum-PointPillars
42.89 %
Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR
PointPillars
41.92%
PointPillars: Fast Encoders for Object Detection from Point Clouds
-
0 of 12 row(s) selected.
Previous
Next
3D Object Detection On Kitti Pedestrians | SOTA | HyperAI