HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
3D-Objekterkennung
3D Object Detection On Kitti Cyclists Hard
3D Object Detection On Kitti Cyclists Hard
Metriken
AP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AP
Paper Title
Repository
SVGA-Net
57.64%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
VoxelNet
44.37%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
-
STD
55.77%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
PV-RCNN
57.65%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
-
PointRCNN
53.59%
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud
-
SA-Det3D
61.33%
SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection
-
AVOD + Feature Pyramid
46.61%
Joint 3D Proposal Generation and Object Detection from View Aggregation
-
IPOD
48.34%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
Frustum PointNets
50.39%
Frustum PointNets for 3D Object Detection from RGB-D Data
-
PointPillars
52.92%
PointPillars: Fast Encoders for Object Detection from Point Clouds
-
F-ConvNets
57.03%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
-
M3DeTR
59.03%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
-
0 of 12 row(s) selected.
Previous
Next
3D Object Detection On Kitti Cyclists Hard | SOTA | HyperAI