HyperAI

3D Object Detection On Kitti Cyclists Easy

Metriken

AP

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAP
frustum-pointnets-for-3d-object-detection71.96%
pointrcnn-3d-object-proposal-generation-and73.93%
voxelnet-end-to-end-learning-for-point-cloud61.22%
joint-3d-proposal-generation-and-object64.0%
m3detr-multi-representation-multi-scale83.83%
std-sparse-to-dense-3d-object-detector-for78.89%
frustum-convnet-sliding-frustums-to-aggregate79.58%
3d-fct-simultaneous-3d-object-detection-and89.15%
ipod-intensive-point-based-object-detector71.40%
svga-net-sparse-voxel-graph-attention-network79.22%
pointpillars-fast-encoders-for-object75.78%
pv-rcnn-point-voxel-feature-set-abstraction78.60%