HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
3D Object Detection
3D Object Detection On Kitti Cars Hard
3D Object Detection On Kitti Cars Hard
Metriken
AP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AP
Paper Title
Repository
SA-SSD+EBM
72.78%
Accurate 3D Object Detection using Energy-Based Models
Joint
74.30%
Joint 3D Instance Segmentation and Object Detection for Autonomous Driving
-
F-ConvNet
68.08%
Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection
3D Dual-Fusion
79.39%
3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection
PC-RGNN
75.54%
PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object Detection
-
SVGA-Net
74.63%
SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds
-
VoxelNet
57.73%
VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
TRTConv
80.38 %
-
-
PV-RCNN++
77.15%
PV-RCNN++: Point-Voxel Feature Set Abstraction With Local Vector Representation for 3D Object Detection
UberATG-MMF
68.41%
Multi-Task Multi-Sensor Fusion for 3D Object Detection
-
PC-CNN-V2
64.83%
A General Pipeline for 3D Detection of Vehicles
-
GLENet-VR
78.43%
GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation
M3DeTR
76.96%
M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object Detection with Transformers
Voxel R-CNN
77.06
Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection
PGD
9.39%
Probabilistic and Geometric Depth: Detecting Objects in Perspective
AVOD + Feature Pyramid
66.38%
Joint 3D Proposal Generation and Object Detection from View Aggregation
IPOD
66.33%
IPOD: Intensive Point-based Object Detector for Point Cloud
-
Frustum PointNets
62.19%
Frustum PointNets for 3D Object Detection from RGB-D Data
PV-RCNN
76.82%
PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection
STD
76.06%
STD: Sparse-to-Dense 3D Object Detector for Point Cloud
-
0 of 25 row(s) selected.
Previous
Next