HyperAI

3D Object Detection On Kitti Cars Easy

Metriken

AP

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAP
Modell 191.90 %
accurate-3d-object-detection-using-energy91.05%
pv-rcnn-point-voxel-feature-set-abstraction-190.14%
roarnet-a-robust-3d-object-detection-based-on83.71%
pc-rgnn-point-cloud-completion-and-graph89.13%
std-sparse-to-dense-3d-object-detector-for86.61%
frustum-convnet-sliding-frustums-to-aggregate85.88%
probabilistic-and-geometric-depth-detecting19.05%
3d-dual-fusion-dual-domain-dual-query-camera-191.01%
glenet-boosting-3d-object-detectors-with91.67%
joint-3d-proposal-generation-and-object81.94%
pointrcnn-3d-object-proposal-generation-and84.32%
svga-net-sparse-voxel-graph-attention-network87.33%
frustum-pointnets-for-3d-object-detection81.2%
pv-rcnn-point-voxel-feature-set-abstraction90.25%
se-ssd-self-ensembling-single-stage-object91.49%
a-general-pipeline-for-3d-detection-of84.33%
joint-3d-instance-segmentation-and-object87.74%
pointrgcn-graph-convolution-networks-for-3d85.97%
m3detr-multi-representation-multi-scale90.28%
cia-ssd-confident-iou-aware-single-stage89.59%
spg-unsupervised-domain-adaptation-for-3d90.5%
ipod-intensive-point-based-object-detector79.75%
pointpillars-fast-encoders-for-object79.05%
multi-task-multi-sensor-fusion-for-3d-object-186.81%
voxelnet-end-to-end-learning-for-point-cloud77.47%