HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
3D-Mensch-Pose-Schätzung
3D Human Pose Estimation On Total Capture
3D Human Pose Estimation On Total Capture
Metriken
Average MPJPE (mm)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Average MPJPE (mm)
Paper Title
Repository
IMUPVH
70
Total capture: 3D human pose estimation fusing video and inertial sensors
-
MTF-Transformer (M=0.4, T=7)
29.2
Adaptive Multi-view and Temporal Fusing Transformer for 3D Human Pose Estimation
-
AdaFuse
19.2
AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in the Wild
AutoEnc
35
Deep Autoencoder for Combined Human Pose Estimation and body Model Upscaling
-
LWCDR
27.5
Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled Representation
-
PVH
107
Total capture: 3D human pose estimation fusing video and inertial sensors
-
Tri-CPM
99
Convolutional Pose Machines
DeepFuse-IMU
28.9
DeepFuse: An IMU-Aware Network for Real-Time 3D Human Pose Estimation from Multi-View Image
-
AdaDeepFuse
22.5
FusePose: IMU-Vision Sensor Fusion in Kinematic Space for Parametric Human Pose Estimation
-
ROS node wrapping
112
3D Human Pose Estimation in RGBD Images for Robotic Task Learning
Fusion-RPSM
29.0
Cross View Fusion for 3D Human Pose Estimation
Single-RPSM
41.0
Cross View Fusion for 3D Human Pose Estimation
GeoFuse
24.6
Fusing Wearable IMUs with Multi-View Images for Human Pose Estimation: A Geometric Approach
DeepFuse-Vision Only
32.7
DeepFuse: An IMU-Aware Network for Real-Time 3D Human Pose Estimation from Multi-View Image
-
0 of 14 row(s) selected.
Previous
Next
3D Human Pose Estimation On Total Capture | SOTA | HyperAI