HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
3D-Anomalieerkennung und -Segmentierung
3D Anomaly Detection And Segmentation On
3D Anomaly Detection And Segmentation On
Metriken
Detection AUROC
Segmentation AUPRO
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Detection AUROC
Segmentation AUPRO
Paper Title
Repository
Voxel GAN
0.537
0.583
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
-
Voxel VM
0.571
0.492
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
-
Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection (FPFH)
0.782
0.924
Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection
-
Shape-Guided (only SDF)
0.916
0.931
Shape-Guided: Shape-Guided Dual-Memory Learning for 3D Anomaly Detection
CPMF (2D)
0.8918
0.9145
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
-
Voxel AE
0.699
0.348
The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization
-
3D-ST_128
-
0.833
Anomaly Detection in 3D Point Clouds using Deep Geometric Descriptors
-
CPMF (2D+3D)
0.9515
0.9293
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
-
CPMF (3D)
0.8304
0.9230
Complementary Pseudo Multimodal Feature for Point Cloud Anomaly Detection
-
0 of 9 row(s) selected.
Previous
Next
3D Anomaly Detection And Segmentation On | SOTA | HyperAI