HyperAIHyperAI
vor 16 Tagen

Einbeziehung von Word Attention in die zeichenbasierte Wortsegmentierung

{Shohei Higashiyama, Masao Utiyama, Yoshiaki Oida, Yohei Sakamoto, Masao Ideuchi, Eiichiro Sumita, Isaac Okada}
Einbeziehung von Word Attention in die zeichenbasierte Wortsegmentierung
Abstract

Neuronale Netzwerkmodelle werden aktiv zur Wortsegmentierung, insbesondere für Chinesisch, eingesetzt, da sie den Aufwand bei der Merkmalsingenieurarbeit minimieren. Typische Segmentierungsmodelle werden in zeichenbasierte Modelle, die präzise Inferenz ermöglichen, und wortbasierte Modelle, die informationsreiche Wortniveau-Informationen nutzen, eingeteilt. Wir schlagen ein zeichenbasiertes Modell vor, das Wortinformationen nutzt, um die Vorteile beider Modelltypen zu kombinieren. Unser Modell lernt mithilfe einer Aufmerksamkeitsmechanik die Bedeutung mehrerer möglicher Wörter für ein Zeichen und nutzt diese Erkenntnis für die Segmentierungsentscheidung. Die experimentellen Ergebnisse zeigen, dass unser Modell sowohl auf japanischen als auch auf chinesischen Benchmark-Datensätzen eine bessere Leistung als die aktuell besten Modelle erzielt.

Einbeziehung von Word Attention in die zeichenbasierte Wortsegmentierung | Neueste Forschungsarbeiten | HyperAI