HyperAIHyperAI

Command Palette

Search for a command to run...

vor 4 Monaten

ArtQuest: Die Bekämpfung versteckter Sprachverzerrungen in ArtVQA

{Gerard de Melo Sedigheh Eslami Tibor Bleidt}

ArtQuest: Die Bekämpfung versteckter Sprachverzerrungen in ArtVQA

Abstract

Die Aufgabe des Visual Question Answering (VQA) wurde umfassend an allgemeinen, realen Bildern aus der Alltagswelt untersucht. Der Transfer von Erkenntnissen aus dem allgemeinen Domänen-VQA in den Kunstbereich (ArtVQA) ist jedoch nicht trivial, da Modelle hier nicht nur abstrakte Konzepte, Details von Pinselstrichen und Stile von Gemälden in den visuellen Daten erkennen müssen, sondern auch Hintergrundwissen über Kunst besitzen sollten. Dies wird durch die fehlende Verfügbarkeit hochwertiger Datensätze zusätzlich erschwert. In dieser Arbeit beleuchten wir verborgene sprachliche Bias in der AQUA-Datensammlung, dem einzigen öffentlich verfügbaren Benchmark-Datensatz für ArtVQA. Als Folge kann die Mehrheit der Fragen ohne Konsultation der visuellen Informationen beantwortet werden, wodurch der „V“ in ArtVQA weitgehend bedeutungslos wird. Um diesem Problem entgegenzuwirken, erstellen wir eine einfache, jedoch praktikable Datensammlung namens ArtQuest, die strukturierte Informationen aus der SemArt-Sammlung nutzt. Unser Datensatz sowie die Pipeline zur Reproduktion unserer Ergebnisse sind öffentlich unter https://github.com/bletib/artquest verfügbar.

Benchmarks

BenchmarkMethodikMetriken
visual-question-answering-vqa-on-artquestPrefixLM with CLIP and T5
1:1 Accuracy: 50.2

KI mit KI entwickeln

Von der Idee bis zum Start — beschleunigen Sie Ihre KI-Entwicklung mit kostenlosem KI-Co-Coding, sofort einsatzbereiter Umgebung und den besten GPU-Preisen.

KI-Co-Coding
Sofort einsatzbereit GPUs
Beste Preise
Jetzt starten

Hyper Newsletters

Abonnieren Sie unsere neuesten Updates
Wir werden die neuesten Updates der Woche in Ihren Posteingang liefern um neun Uhr jeden Montagmorgen
Unterstützt von MailChimp
ArtQuest: Die Bekämpfung versteckter Sprachverzerrungen in ArtVQA | Forschungsarbeiten | HyperAI