JS 散度 Jensen-Shannon Divergence

JS 散度度量了两个概率分布的相似度,基于 KL 散度的变体,解决了 KL 散度非对称的问题。一般地,JS 散度是对称的,其取值是 0 到 1 之间。

定义如下:

KL 散度和 JS 散度度量的时候有一个问题:

如果两个分配 P,Q 离得很远,完全没有重叠的时候,那么 KL 散度值是没有意义的,而 JS 散度值是一个常数,这就意味这一点的梯度为 0 。