HyperAIHyperAI

Command Palette

Search for a command to run...

控制台

无监督学习 Unsupervised  learning

日期

7 年前

无监督学习是一种学习方法,其不为训练集提供对应类别的标识,通常适用于有数据集但无标签的情况。

无监督学习特点

  • 使用的数据未经标记,即不知道输入数据对应的输出结果,其只能自己寻找数据模型和规律,如聚类和异常检测;
  • 其目的是去对原始资料进行分类,以便了解资料内部结构;
  • 学习时不知道分类结果是否正确,亦即没有收到监督式增强;
  • 仅对此种网络提供输入范例,而它会自动从这些范例中找出潜在类别规则,学习完毕和测试后,会将其用至新的案例;

机器学习目前分为监督学习、无监督学习和半监督学习,其划分标准是训练样本是否包含人为标注的结果。

相关词:监督式学习、半监督学习
子级词:Apriori  算法、 K-Means 算法

用 AI 构建 AI

从构思到上线——通过免费 AI 协同编码、开箱即用的环境和最优惠的 GPU 价格加速您的 AI 开发。

AI 协同编码
可直接使用的 GPU
最佳价格

Hyper Newsletters

订阅我们的最新资讯
我们会在北京时间 每周一的上午九点 向您的邮箱投递本周内的最新更新
邮件发送服务由 MailChimp 提供
无监督学习 Unsupervised  learning | Wiki | HyperAI超神经