HyperAI超神经

Visual Question Answering On Gqa Test2019

评估指标

Accuracy
Binary
Consistency
Distribution
Open
Plausibility
Validity

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称AccuracyBinaryConsistencyDistributionOpenPlausibilityValidity
模型 160.9877.3290.775.3646.5584.9396.38
模型 260.5978.4492.667.2844.8385.3896.57
模型 346.5563.2674.577.4631.884.2596.02
模型 464.9282.6394.375.1149.2984.9196.64
模型 559.3777.5388.636.0643.3584.7196.18
模型 659.876.7489.145.1144.8584.296.23
模型 760.1777.1989.615.8345.1484.4696.36
模型 859.2977.3188.945.843.3884.4396.3
模型 937.0356.6163.9628.419.7485.1295.76
模型 1057.3575.0787.615.9441.7184.595.86
vinvl-l-enriching-visual-representation-with64.8582.5994.04.5949.1984.9196.62
模型 1255.072.0983.475.2939.9284.6696.34
bottom-up-and-top-down-attention-for-image49.7466.6478.715.9834.8384.5796.18
模型 1457.8974.5485.455.7343.1984.9996.4
graph-reasoning-networks-for-visual-question61.2278.6990.316.7745.8185.4396.36
模型 1656.9574.6287.715.8141.3684.5795.98
模型 1760.1876.9789.655.2945.3684.4796.33
模型 1863.1778.9493.253.7149.2584.2896.41
模型 1955.6572.8689.189.6940.4685.2796.33
模型 2056.9674.9785.127.1341.0684.8596.38
模型 2160.2776.9990.165.3945.5184.4996.31
模型 2260.0276.3790.055.6345.5984.3496.29
模型 2355.9371.8183.26.0541.9385.0996.01
模型 2459.9379.0993.7210.143.0285.9296.41
模型 2563.277.9189.845.2550.2285.1596.47
模型 2689.391.298.40.087.497.298.9
模型 2759.4377.1189.056.3943.8284.9496.56
模型 2856.1872.8485.465.4241.4784.0496.18
模型 2944.0657.5738.188.3532.1375.1985.94
模型 3059.5477.9889.216.0143.2684.9496.24
模型 3161.177.9991.085.5246.1984.8296.36
模型 3256.6573.6584.356.0741.6484.3795.94
模型 3356.5973.084.74.6842.1184.8696.4
模型 3451.2269.3682.446.4535.283.8296.12
模型 3560.1477.1589.585.8145.1284.4796.36
模型 3657.176.091.710.5240.4185.5896.16
模型 3761.0977.8488.925.6846.385.4996.43
模型 3860.6778.0289.816.4145.3684.8496.31
模型 3953.5770.1581.145.3238.9484.6796.36
模型 4061.0578.0289.775.2446.0684.9596.5
模型 4162.4480.2894.365.3346.6984.9196.46
vinvl-making-visual-representations-matter-in64.6582.6394.354.7248.7784.9896.62
模型 4357.2174.4687.65.641.9984.8796.2
模型 4417.8236.0562.419.991.7434.8435.78
模型 4554.1569.382.365.4140.7985.1595.99
模型 4658.0676.690.967.641.785.2796.31
lxmert-learning-cross-modality-encoder62.7179.7993.16.4247.6485.2196.36
模型 4859.8178.0291.436.043.7584.7796.5
模型 4928.942.9451.6993.0816.6274.8188.86
模型 5055.772.8883.525.3240.5384.8196.39
模型 5157.6575.2287.355.4842.1484.7396.18
模型 5240.361.1874.1140.4421.8886.1396.14
模型 5370.2377.586.941.4963.8283.7796.65
模型 5457.1475.0787.365.2941.3184.4995.87
模型 5548.9763.8583.8513.7235.8383.9395.62
模型 5659.1276.6988.95.643.684.7896.43
模型 5756.1673.5684.995.8740.884.8396.4
模型 5853.3170.4180.336.438.2384.3295.99
模型 5948.4465.0281.1917.7933.8185.2996.15
模型 6060.0776.8489.326.2145.2784.5596.35
模型 6136.7555.2469.9340.8420.4484.1395.1
模型 6260.4277.1289.696.0345.6884.5696.35
模型 6363.9480.8491.544.6949.0384.7496.56
模型 6451.8767.9980.26.7737.6484.3596.25
模型 6560.3777.0989.776.4345.6184.5696.22
模型 6652.1969.1578.345.6937.2283.4495.45
模型 6772.1481.1690.962.3964.1984.8196.77
模型 6861.1278.0791.135.5546.1684.896.36
模型 6960.9377.8390.35.7446.0184.6996.35
模型 7060.5176.8788.28.4846.0685.1996.15
模型 7149.2867.5983.6814.2833.1283.4194.95
模型 7276.0484.4691.473.6868.683.7596.42
模型 7345.8664.7470.578.3829.286.1396.61
模型 7441.6355.1282.2113.0129.7377.492.27
模型 7561.4978.488.685.746.5684.8596.33
模型 7655.4172.8783.065.4839.9984.7496.35
模型 7726.4545.6955.2311.499.4750.9360.81
模型 7853.8972.5287.478.6637.4485.0596.39
模型 7955.5772.3983.3210.1840.7484.2496.15
模型 8060.8978.0793.025.3145.7384.0596.0
模型 8160.8779.1292.618.5644.7685.6396.35
模型 8231.2447.954.0413.9816.6684.3184.33
模型 8354.0671.2381.595.3438.9184.4896.16
模型 8460.777.4189.656.0945.9684.5596.37
模型 8547.7266.2884.1619.0531.3484.5295.45
模型 8649.2766.5778.516.9134.084.5895.78
模型 8741.0761.968.6817.9322.6987.396.39
模型 8851.5167.8279.76.1637.1183.6995.82
模型 8956.0973.485.115.1440.8284.7996.37
模型 9056.1172.6585.515.4241.5284.3696.25
模型 9157.7975.3788.35.6542.2684.8596.11
模型 9262.4580.9193.955.3646.1584.1596.33
模型 9358.9176.0889.526.9343.7584.5296.18
模型 9456.9575.0190.499.541.0285.4696.37
模型 9560.8378.992.495.5444.8984.5596.19
lxmert-learning-cross-modality-encoder60.3377.1689.595.6945.4784.5396.35
模型 9760.9578.4189.084.8645.5484.2796.35
模型 9856.3874.8491.716.3240.0983.7695.43
模型 9958.275.9188.255.8142.5784.7296.08
模型 10056.2873.7386.865.7840.8784.296.01
模型 10157.7775.7886.855.3641.8684.9796.44
模型 10258.7276.489.586.5843.1184.6896.21
模型 10342.7561.2163.517.6326.4584.295.99
模型 10473.3379.6877.022.4667.7383.796.36
模型 10554.7972.4286.16.0139.2384.5595.92
模型 10652.368.4684.3612.5438.0485.296.2
模型 10759.8476.7989.526.0644.8984.7296.2
模型 10860.1876.8489.775.6545.4884.696.37
模型 10943.8459.2467.7110.9930.2484.0195.32
模型 11059.7277.9789.436.2543.6184.8996.55
模型 11160.2877.1389.475.3845.4184.4596.33
模型 11258.1276.3988.015.6542.084.896.06
模型 11358.8875.0784.645.5444.5884.8696.23
模型 11460.0176.7789.176.2845.2184.4696.35
模型 11559.0676.0789.816.1444.0482.7693.82
模型 11658.4277.3990.297.8641.6784.5395.57
模型 11755.3572.6584.175.2240.0884.5696.32
模型 11853.8568.4480.25.8440.9785.1996.28
模型 11954.9471.782.715.140.1484.7896.4
模型 12073.8180.891.761.767.6483.996.73
模型 12167.5580.4593.832.7856.1684.1696.53
模型 12257.0773.7784.684.742.3384.8196.48
模型 12356.073.987.166.0240.284.4596.01
模型 12457.0174.7887.746.0641.3284.2596.03
模型 12552.0267.3580.445.6438.583.9495.75
模型 12674.0382.1289.01.2966.8983.5896.76
模型 12747.3858.7673.716.2937.3481.7594.55