Visual Prompt Tuning On Vtab 1K Specialized 4
评估指标
Mean Accuracy
评测结果
各个模型在此基准测试上的表现结果
模型名称 | Mean Accuracy | Paper Title | Repository |
---|---|---|---|
VPT-Deep(ViT-B/16_MAE_pretrained_ImageNet-1K) | 60.61 | Visual Prompt Tuning | |
SPT-Shallow(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 83.93 | Revisiting the Power of Prompt for Visual Tuning | - |
SPT-Deep(ViT-B/16_MAE_pretrained_ImageNet-1K) | 83.15 | Revisiting the Power of Prompt for Visual Tuning | - |
SPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 84.95 | Revisiting the Power of Prompt for Visual Tuning | - |
VPT-Shallow(ViT-B/16_MAE_pretrained_ImageNet-1K) | 69.65 | Visual Prompt Tuning | |
GateVPT(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 83.38 | Improving Visual Prompt Tuning for Self-supervised Vision Transformers | |
GateVPT(ViT-B/16_MAE_pretrained_ImageNet-1K) | 76.86 | Improving Visual Prompt Tuning for Self-supervised Vision Transformers | |
VPT-Deep(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 83.04 | Visual Prompt Tuning | |
VPT-Shallow(ViT-B/16_MoCo_v3_pretrained_ImageNet-1K) | 82.26 | Visual Prompt Tuning | |
SPT-Shallow(ViT-B/16_MAE_pretrained_ImageNet-1K) | 80.90 | Revisiting the Power of Prompt for Visual Tuning | - |
0 of 10 row(s) selected.