HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Visual Object Tracking
Visual Object Tracking On Got 10K
Visual Object Tracking On Got 10K
评估指标
Average Overlap
Success Rate 0.5
Success Rate 0.75
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average Overlap
Success Rate 0.5
Success Rate 0.75
Paper Title
Repository
SLT-TransT
67.5
76.8
60.3
Towards Sequence-Level Training for Visual Tracking
OSTrack-384
73.7
83.2
70.8
Joint Feature Learning and Relation Modeling for Tracking: A One-Stream Framework
MCITrack-B224
77.9
88.2
76.8
Exploring Enhanced Contextual Information for Video-Level Object Tracking
MCITrack-L384
80.0
88.5
80.2
Exploring Enhanced Contextual Information for Video-Level Object Tracking
DiMP
61.1
71.7
-
Learning Discriminative Model Prediction for Tracking
SeqTrack-L384
74.8
81.9
72.2
Unified Sequence-to-Sequence Learning for Single- and Multi-Modal Visual Object Tracking
Siam R-CNN
64.9
72.8
-
Siam R-CNN: Visual Tracking by Re-Detection
-
MITS
80.4
89.8
75.8
Integrating Boxes and Masks: A Multi-Object Framework for Unified Visual Tracking and Segmentation
STMTrack
64.2
73.7
57.5
STMTrack: Template-free Visual Tracking with Space-time Memory Networks
ATOM
61.0
74.2
-
ATOM: Accurate Tracking by Overlap Maximization
ARTrackV2-L
79.5
87.8
79.6
ARTrackV2: Prompting Autoregressive Tracker Where to Look and How to Describe
TRASFUST
61.7
72.9
-
Tracking-by-Trackers with a Distilled and Reinforced Model
NeighborTrack-OSTrack
75.7
85.72
73.3
NeighborTrack: Improving Single Object Tracking by Bipartite Matching with Neighbor Tracklets
ARTrack-L
78.5
87.4
77.8
Autoregressive Visual Tracking
FEAR-M
62.3
-
-
FEAR: Fast, Efficient, Accurate and Robust Visual Tracker
SAMURAI-L
81.7
92.2
76.9
SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory
-
TATrack-L-GOT
76.6
85.7
73.4
Target-Aware Tracking with Long-term Context Attention
-
Ocean
61.1
72.1
-
Ocean: Object-aware Anchor-free Tracking
MixFormer-1k
71.2
79.9
65.8
MixFormer: End-to-End Tracking with Iterative Mixed Attention
FEAR-L
64.5
-
-
FEAR: Fast, Efficient, Accurate and Robust Visual Tracker
0 of 39 row(s) selected.
Previous
Next