Video Frame Interpolation On Snu Film Hard
评估指标
PSNR
SSIM
评测结果
各个模型在此基准测试上的表现结果
模型名称 | PSNR | SSIM | Paper Title | Repository |
---|---|---|---|---|
DQBC | 30.94 | 0.9378 | Video Frame Interpolation with Densely Queried Bilateral Correlation | |
CURE | 30.66 | 0.9373 | Learning Cross-Video Neural Representations for High-Quality Frame Interpolation | |
UPR-Net LARGE | 30.86 | 0.9377 | A Unified Pyramid Recurrent Network for Video Frame Interpolation | |
DBVI | 31.68 | 0.953 | Deep Bayesian Video Frame Interpolation | |
ST-MFNet | 31.698 | - | ST-MFNet: A Spatio-Temporal Multi-Flow Network for Frame Interpolation | |
EMA-VFI | 30.94 | 0.9392 | Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation | |
EBME-H* | 30.64 | 0.937 | Enhanced Bi-directional Motion Estimation for Video Frame Interpolation | |
VFIMamba | 30.99 | 0.9401 | VFIMamba: Video Frame Interpolation with State Space Models |
0 of 8 row(s) selected.