HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Unsupervised Domain Adaptation
Unsupervised Domain Adaptation On Imagenet C
Unsupervised Domain Adaptation On Imagenet C
评估指标
mean Corruption Error (mCE)
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
mean Corruption Error (mCE)
Paper Title
Repository
ResNeXt101 32x8d + DeepAug + Augmix + RPL
34.8
If your data distribution shifts, use self-learning
EfficientNet-L2+ENT
23.0
If your data distribution shifts, use self-learning
ResNeXt101 32x8d + IG-3.5B + RPL
40.9
If your data distribution shifts, use self-learning
ResNet50 + RPL
50.5
If your data distribution shifts, use self-learning
ResNeXt101 32x8d + RPL
43.2
If your data distribution shifts, use self-learning
ResNet50 + ENT
51.6
If your data distribution shifts, use self-learning
ResNeXt101 32x8d + ENT
44.3
If your data distribution shifts, use self-learning
ResNeXt101+DeepAug+AugMix, BatchNorm Adaptation, full adaptation
38.0
Improving robustness against common corruptions by covariate shift adaptation
ResNeXt101+DeepAug+AugMix, BatchNorm Adaptation, 8 samples
40.7
Improving robustness against common corruptions by covariate shift adaptation
ResNeXt101 32x8d + DeepAug + Augmix + ENT
35.5
If your data distribution shifts, use self-learning
ResNet50+DeepAug+AugMix, BatchNorm Adaptation, 8 samples
48.4
Improving robustness against common corruptions by covariate shift adaptation
ResNet50 (baseline), BatchNorm Adaptation, 8 samples
65.0
Improving robustness against common corruptions by covariate shift adaptation
ResNet50 (baseline), BatchNorm Adaptation, full adaptation
62.2
Improving robustness against common corruptions by covariate shift adaptation
ResNet50+DeepAug+AugMix, BatchNorm Adaptation, full adaptation
45.4
Improving robustness against common corruptions by covariate shift adaptation
ResNeXt101 32x8d + IG-3.5B + ENT
40.8
If your data distribution shifts, use self-learning
EfficientNet-L2+RPL
22.0
If your data distribution shifts, use self-learning
0 of 16 row(s) selected.
Previous
Next