HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 语音分离
  4. Speech Separation On Wham

Speech Separation On Wham

评估指标

SI-SDRi

评测结果

各个模型在此基准测试上的表现结果

模型名称
SI-SDRi
Paper TitleRepository
TDANet Large15.2An efficient encoder-decoder architecture with top-down attention for speech separation-
WHYV12.964An alternative Approach in Voice Extraction-
MossFormer (L) + DM17.3MossFormer: Pushing the Performance Limit of Monaural Speech Separation using Gated Single-Head Transformer with Convolution-Augmented Joint Self-Attentions-
TDANet14.8An efficient encoder-decoder architecture with top-down attention for speech separation-
MossFormer218.1MossFormer2: Combining Transformer and RNN-Free Recurrent Network for Enhanced Time-Domain Monaural Speech Separation-
SepReformer-L + DM18.4Separate and Reconstruct: Asymmetric Encoder-Decoder for Speech Separation-
0 of 6 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili