HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 无源域适应
  4. Source Free Domain Adaptation On Visda 2017

Source Free Domain Adaptation On Visda 2017

评估指标

Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
Accuracy
Paper TitleRepository
SFDA2++89.6SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
RCL93.2Empowering Source-Free Domain Adaptation via MLLM-Guided Reliability-Based Curriculum Learning
NRC85.9Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation
G-SFDA85.4Generalized Source-free Domain Adaptation
SHOT++87.3Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer
SHOT82.9Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
SFDA288.1SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
DaC87.3Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning
C-SFDA87.8C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation
0 of 9 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili