HyperAI
HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
无源域适应
Source Free Domain Adaptation On Visda 2017
Source Free Domain Adaptation On Visda 2017
评估指标
Accuracy
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Accuracy
Paper Title
Repository
SFDA2++
89.6
SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
-
RCL
93.2
Empowering Source-Free Domain Adaptation via MLLM-Guided Reliability-Based Curriculum Learning
-
NRC
85.9
Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation
-
G-SFDA
85.4
Generalized Source-free Domain Adaptation
-
SHOT++
87.3
Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer
-
SHOT
82.9
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
-
SFDA2
88.1
SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
-
DaC
87.3
Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning
-
C-SFDA
87.8
C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation
-
0 of 9 row(s) selected.
Previous
Next
Source Free Domain Adaptation On Visda 2017 | SOTA | HyperAI超神经