HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. SMAC
  4. Smac On Smac Mmm2 1

Smac On Smac Mmm2 1

评估指标

Median Win Rate

评测结果

各个模型在此基准测试上的表现结果

模型名称
Median Win Rate
Paper TitleRepository
ACE100ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
QMIX69The StarCraft Multi-Agent Challenge
DIQL85.23DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DPLEX96.88A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
QMIX69Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
IQL0The StarCraft Multi-Agent Challenge
VDN1The StarCraft Multi-Agent Challenge
QMIX92.44DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
VDN89.2DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
IQL68.92DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
Heuristic0The StarCraft Multi-Agent Challenge
DDN97.22DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX95.11DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QPLEX96.88A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
0 of 14 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili