HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Smac
Smac On Smac Corridor
Smac On Smac Corridor
评估指标
Average Score
Median Win Rate
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average Score
Median Win Rate
Paper Title
Repository
DIQL
19.68
91.62
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DPLEX
19.08
81.25
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
VDN
19.47
85.34
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
IQL
-
0
The StarCraft Multi-Agent Challenge
DDN
20
95.4
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
Heuristic
-
0
The StarCraft Multi-Agent Challenge
QMIX
15.07
37.61
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX
19.66
90.45
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QPLEX
18.73
75.00
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
ACE
-
100
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
QMIX
-
1
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
QMIX
-
1
The StarCraft Multi-Agent Challenge
IQL
19.42
84.87
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
0 of 13 row(s) selected.
Previous
Next