HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Smac
Smac On Smac 6H Vs 8Z 1
Smac On Smac 6H Vs 8Z 1
评估指标
Median Win Rate
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Median Win Rate
Paper Title
Repository
IQL
0
The StarCraft Multi-Agent Challenge
VDN
0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
Heuristic
0
The StarCraft Multi-Agent Challenge
DDN
83.92
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QMIX
3
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
QMIX
12.78
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
ACE
93.75
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
VDN
0
The StarCraft Multi-Agent Challenge
QPLEX
-
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
QMIX
3
The StarCraft Multi-Agent Challenge
DMIX
49.43
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DPLEX
43.75
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
IQL
0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DIQL
0.00
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
0 of 14 row(s) selected.
Previous
Next