HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. SMAC
  4. Smac On Smac 6H Vs 8Z 1

Smac On Smac 6H Vs 8Z 1

评估指标

Median Win Rate

评测结果

各个模型在此基准测试上的表现结果

模型名称
Median Win Rate
Paper TitleRepository
IQL0The StarCraft Multi-Agent Challenge
VDN0DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
Heuristic0The StarCraft Multi-Agent Challenge
DDN83.92DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QMIX3Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
QMIX12.78DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
ACE93.75ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
VDN0The StarCraft Multi-Agent Challenge
QPLEX-A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
QMIX3The StarCraft Multi-Agent Challenge
DMIX49.43DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DPLEX43.75A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
IQL0DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DIQL0.00DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
0 of 14 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili