HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Smac 1
Smac On Smac Def Infantry Parallel
Smac On Smac Def Infantry Parallel
评估指标
Median Win Rate
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Median Win Rate
Paper Title
Repository
DIQL
45.0
DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation
DMIX
90.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
IQL
40.0
The StarCraft Multi-Agent Challenges+ : Learning of Multi-Stage Tasks and Environmental Factors without Precise Reward Functions
COMA
50.0
Counterfactual Multi-Agent Policy Gradients
DDN
20.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QTRAN
100.0
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
DRIMA
100.0
Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning
-
QMIX
95.0
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
MASAC
30.0
Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
VDN
95.0
Value-Decomposition Networks For Cooperative Multi-Agent Learning
0 of 10 row(s) selected.
Previous
Next