HyperAI超神经

Semi Supervised Semantic Segmentation On 7

评估指标

Validation mIoU

评测结果

各个模型在此基准测试上的表现结果

模型名称
Validation mIoU
Paper TitleRepository
CutMix (DeepLab v3+ ImageNet pre-trained)59.52%Semi-supervised semantic segmentation needs strong, varied perturbations
DMT (DeepLab v2 MSCOCO pre-trained)63.04%DMT: Dynamic Mutual Training for Semi-Supervised Learning
ReCo (DeepLab v3+ with ResNet-101 backbone, ImageNet pre-trained)63.60%Bootstrapping Semantic Segmentation with Regional Contrast
ReCo (DeepLab v2 with ResNet-101 backbone, ImageNet pre-trained)63.16%Bootstrapping Semantic Segmentation with Regional Contrast
CutMix (DeepLab v2 ImageNet pre-trained)53.79%Semi-supervised semantic segmentation needs strong, varied perturbations
ClassMix (DeepLab v2 MSCOCO pretrained)54.18%ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning
0 of 6 row(s) selected.